Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
J Environ Manage ; 358: 120808, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593742

RESUMO

The demand for mountain water resources is increasing, and their availability is threatened by climate change, emphasizing the urgency for effective protection and management. The upper Sali-Dulce watershed holds vital significance as it contributes the majority of the Sali-Dulce water resources, supporting a densely populated dry region in Northwestern Argentina, covering an area of 24,217 km2. However, the potential impact of climate change and land use/land cover change on water yield in this watershed remains uncertain. This study employs the InVEST Annual Water Yield model to analyze the average water yield in the watershed and evaluate its potential changes under future scenarios of climate and land use/land cover change. InVEST was calibrated using data from multiple river gauges located across the watershed, indicating satisfactory performance (R2 = 0.751, p-value = 0.0054). Precipitation and evapotranspiration were the most important variables explaining water yield in the area, followed by land use. Water yield showed a notable concentration in the montane area with 40% of the watershed accounting for 80% of the water yield, underscoring the importance of conserving natural land cover in this critical zone. Climate change scenarios project an increase in water yield ranging from 21 to 75%, while the effects of land cover change scenarios on water yield vary, with reforestation scenarios leading to reductions of up to 15% and expansions in non-irrigated agriculture resulting in increases of up to 40%. Additionally, water yield distribution may become more concentrated or dispersed, largely dependent on the type of land cover. The combined scenarios highlight the pivotal role of land cover in adapting to climate change. Our findings provide valuable insights for designing future studies and developing policies aimed at implementing effective adaptation strategies to climate change within the Salí-Dulce watershed.

2.
J Environ Manage ; 357: 120780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569267

RESUMO

Water availability in the subhumid region is highly vulnerable to frequent droughts. Water scarcity in this region has become a limiting factor for ecosystem health, human livelihood, and regional economic development. A notable pattern of land cover change in the subhumid region of the United States is the increasing forest area due to afforestation/reforestation and woody plant encroachment (WPE). Given the distinct hydrological processes and runoff generation between forests and grasslands, it is important to evaluate the impacts of forest expansion on water resources, especially under future climate conditions. In this study, we focused on a typical subhumid watershed in the United States - the Little River Watershed (LRW). Utilizing SWAT + simulations, we projected streamflow dynamics at the end of the 21st century in two climate scenarios (RCP45 and RCP85) and eleven forest expansion scenarios. In comparison to the period of 2000-2019, future climate change during 2080-2099 will increase streamflow in the Little River by 5.1% in the RCP45 but reduce streamflow significantly by 30.1% in the RCP85. Additionally, our simulations revealed a linear decline in streamflow with increasing forest coverage. If all grasslands in LRW were converted into forests, it would lead to an additional 41% reduction in streamflow. Of significant concern is Lake Thunderbird, the primary reservoir supplying drinking water to the Oklahoma City metropolitan area. Our simulation showed that if all grasslands were replaced by forests, Lake Thunderbird during 2080-2099 would experience an average of 8.6 years in the RCP45 and 9.4 years in the RCP85 with water inflow amount lower than that during the extreme drought event in 2011/2012. These findings hold crucial implications for the formulation of policies related to afforestation/reforestation and WPE management in subhumid regions, which is essential to ensuring the sustainability of water resources.


Assuntos
Ecossistema , Florestas , Humanos , Recursos Hídricos , Água , Abastecimento de Água , Plantas , Mudança Climática , Rios
3.
Artigo em Inglês | MEDLINE | ID: mdl-38573578

RESUMO

Water resources security is an important cornerstone of regional sustainable development, but the current evaluation system of water resources security is not scientific, and the measurement of safety level has not been optimized by combining algorithms. In this paper, indicators are selected according to the actual situation in Anhui Province. Firstly, correlation analysis (CA) and principal component analysis (PCA) are used to reduce the dimensionality of indicators, and then, the scientific evaluation is carried out based on genetic algorithm optimized back propagation neural network (GA-BP). This paper improves the generalization ability of the evaluation model and overcomes the shortcomings of the traditional model, which is slow in convergence and easy to fall into local optimality. The results showed that the water resources security level showed an obvious improvement trend from 2006 to 2020 and stabilized at a relatively safe level from 2014 to 2020. The subsystem of water resources environmental security is the least secure, followed by the subsystem of social and economic security, and the security of water resources regulation and response is basically stable at a relatively safe level. The conclusion of this study can provide decision-making basis for the relevant research of government, society, and scientific community.

4.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611894

RESUMO

The sustainable management of wastewater through recycling and utilization stands as a pressing concern in the trajectory of societal advancement. Prioritizing the elimination of diverse organic contaminants is paramount in wastewater treatment, garnering significant attention from researchers worldwide. Emerging metal-organic framework materials (MOFs), bridging organic and inorganic attributes, have surfaced as novel adsorbents, showcasing pivotal potential in wastewater remediation. Nevertheless, challenges like limited water stability, elevated dissolution rates, and inadequate hydrophobicity persist in the context of wastewater treatment. To enhance the performance of MOFs, they can be modified through chemical or physical methods, and combined with membrane materials as additives to create membrane composite materials. These membrane composites, derived from MOFs, exhibit remarkable characteristics including enhanced porosity, adjustable pore dimensions, superior permeability, optimal conductivity, and robust water stability. Their ability to effectively sequester organic compounds has spurred significant research in this field. This paper introduces methods for enhancing the performance of MOFs and explores their potential applications in water treatment. It delves into the detailed design, synthesis strategies, and fabrication of composite membranes using MOFs. Furthermore, it focuses on the application prospects, challenges, and opportunities associated with MOF composite membranes in water treatment.

5.
Sci Rep ; 14(1): 8462, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605176

RESUMO

There are important ways to solve the ecological risk problems of regional water resources and soil resources, and to promote the benign development of soil and water resources, involving scientific evaluation of the ecological risk of soil and water resources in Hefei metropolitan area, clarifying the intrinsic evolution law of ecological risk and identifying the characteristics of spatial and temporal variations. Based on the conceptual model of "ST-QS-RR", the evaluation indicator system is constructed, the CRITIC method is used to assign weights, and the TOPSIS method, kernel density method, markov chain and resistance model are used to measure and analyse the spatial and temporal characteristics of ecological risk of soil and water resources, and to explore the main factors that cause ecological risk of soil and water resources. The results of the study show that: (1) Hefei metropolitan area and its cities show a steady decline and the characteristics of "high in the north and low in the south, high in the west and low in the east". (2) Most of the subsystems in the Hefei metropolitan area and the cities show a decreasing trend, with its resistance factors mainly concentrated in the QS system. (3) There is club convergence in Hefei metropolitan area. When the type of adjacent domain is higher, the change of risk type is more sensitive.

6.
Environ Manage ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637416

RESUMO

Water governance demands multi-sector participation beyond the state; and, appropriate laws, policies, regulations, and institutions need to be developed and put in place for sustainable use of water resources. A good water policy, a critical and integral instrument of water governance, guides water use schemes and ensures equitable water distribution among users. The Ethiopian Central Rift Valley (CRV) is rich in water resources, but these water resources are currently under severe strain owing to an imbalance in human-water interactions. This study examined the state of water resources governance framework, policy coherence, actors' engagement and transparency, accountability, and participation in irrigation water supply in the CRV of Ethiopia. Key informant interviews (KII), focused group discussions, and document reviews were used to gather data for the study. The NVivo 11 program was used to organize, code, and analyze the data. The results revealed that water resources governance practices such as water allocation and apportionment, water resources protection, and conservation activities were inappropriately exercised. Water resources management policy mechanisms were not fully put in place. Lack of coherence in water policy implementation, absence of clear roles and responsibilities of stakeholders, absence of transparency and accountability in irrigation water service delivery, and lack of meaningful participation of key actors in water governance decision-making were observed. As a result, over-abstraction, deterioration of buffer zone areas, and chemical erosion from surrounding farming are attributed to the reduction in water volume and quality in the CRV. These challenges have influenced aquatic ecosystem services and threaten the livelihoods of the surrounding communities. Hence, reforms relating to policy coherence and enforcement, stakeholder engagement, water distribution strategies, and the implementation of water governance principles must be given adequate emphasis.

7.
Heliyon ; 10(8): e29320, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644853

RESUMO

Water scarcity threatens agriculture and food security in arid regions like Saudi Arabia. The nation produces significant quantities of municipal wastewater, which, with adequate treatment, could serve as an alternative water source for irrigation, thereby reducing reliance on fossil and non-renewable groundwater. This study assessed the appropriateness of using treated wastewater (TWW) for irrigation in a dry coastal agricultural region in Eastern Saudi Arabia and its impact on groundwater resources. Field investigations were conducted in Qatif to collect water samples and field measurements. A multi-criteria approach was applied to evaluate the TWW's suitability for irrigation, including complying with Saudi Standards, the Irrigation Water Quality Index (IWQI), the National Sanitation Foundation water quality index (NSFWQI), and the individual irrigation indices. In addition, the impact of TWW on groundwater was assessed through hydrogeological and isotope approaches. The results indicate that the use of TWW in the study area complied with the Saudi reuse guidelines except for nitrate, aluminum, and molybdenum. However, irrigation water quality indices classify TWW as having limitations that necessitate the use for salt-tolerant crops on permeable and well-drained soils. Stable isotopic analysis (δ2H, δ18O) revealed that long-term irrigation with TWW affected the shallow aquifer, while deep aquifers were minimally impacted due to the presence of aquitard layer. The application of TWW irrigation has successfully maintained groundwater sustainability in the study area, as evidenced by increased groundwater levels up to 2.3 m. Although TWW contributes to crop productivity, long term agricultural sustainability could be enhanced by improving effluent quality, regulating irrigation practices, implementing buffer zones, and monitoring shallow groundwater. An integrated approach that combines advanced wastewater treatment methods, community involvement, regulatory oversight, and targeted monitoring is recommended to be implemented.

8.
Water Res ; 256: 121579, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38631237

RESUMO

Intensified land use can disturb water quality, potentially increasing the abundance of bacterial pathogens, threatening public access to clean water. This threat involves both direct contamination of faecal bacteria as well as indirect factors, such as disturbed water chemistry and microbiota, which can lead to contamination. While direct contamination has been well described, the impact of indirect factors is less explored, despite the potential of severe downstream consequences on water supply. To assess direct and indirect downstream effects of buildings, farms, pastures and fields on potential water sources, we studied five Swedish lakes and their inflows. We analysed a total of 160 samples in a gradient of anthropogenic activity spanning four time points, including faecal and water-quality indicators. Through species distribution modelling, Random Forest and network analysis using 16S rRNA amplicon sequencing data, our findings highlight that land use indirectly impacts lakes via inflows. Land use impacted approximately one third of inflow microbiota taxa, in turn impacting ∼20-50 % of lake taxa. Indirect effects via inflows were also suggested by causal links between e.g. water colour and lake bacterial taxa, where this influenced the abundance of several freshwater bacteria, such as Polynucleobacter and Limnohabitans. However, it was not possible to identify direct effects on the lakes based on analysis of physiochemical- or microbial parameters. To avoid potential downstream consequences on water supply, it is thus important to consider possible indirect effects from upstream land use and inflows, even when no direct effects can be observed on lakes. Legionella (a genus containing bacterial pathogens) illustrated potential consequences, since the genus was particularly abundant in inflows and was shown to increase by the presence of pastures, fields, and farms. The approach presented here could be used to assess the suitability of lakes as alternative raw water sources or help to mitigate contaminations in important water catchments. Continued broad investigations of stressors on the microbial network can identify indirect effects, avoid enrichment of pathogens, and help secure water accessibility.

9.
Sci Total Environ ; : 172513, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657798

RESUMO

Balancing water demand for socio-economic development and ecosystem stability presents a challenge for regional sustainable management, especially in drylands. Previous studies have indicated that large-scale ecological restoration projects (ERPs) lead to a decline in terrestrial water storage (TWS) in the Mu Us Sandyland (MUS). However, the effects of other human activities (e.g., cropland reclamation, coal mining) on water resources remain unclear, raising concerns regarding water crisis and human-natural system sustainability. Through the utilization of coal mine location data, we found that the impact of coal mass loss on the Gravity Recovery and Climate Experiment (GRACE) products cannot be ignored in MUS, especially in the coal-rich northeastern part. Combining these data with auxiliary datasets, we observed a significant (p < 0.05) decrease in TWS (-0.85 cm yr-1) and groundwater storage (GWS, -0.95 cm yr-1) in the MUS, with human activities accounting for 79.23 % of TWS and 90.45 % of GWS reductions, primarily due to increased agricultural and industrial water consumption. Agricultural water consumption increased 2.23 times from 2001 to 2020, attributed to enhanced water use intensity (62.6 %) and cropland expansion (37.4 %). Industrial water consumption in Shenmu, a representative coal county, experienced a 4.16-fold rise between 2001 and 2020. Despite these challenges, local governments have alleviated water stress, ensured food security, and increased household income by comprehensive management strategies, such as enhancing water-saving technology and enforcing stringent policies. Previous studies have overestimated the amount of water resources consumed by ERPs. However, ERPs has played a critical role in stabilizing the regional ecological environment and ensuring the region as a vital food and energy supplier. Our findings can guide for socio-economic development and water management policies in similar regions.

10.
Small ; : e2312241, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506575

RESUMO

Solar interfacial evaporation technology has the advantages of environmentally conscious and sustainable benefits. Recent research on light absorption, water transportation, and thermal management has improved the evaporation performance of solar interfacial evaporators. However, many studies on photothermal materials and structures only aim to improve performance, neglecting explanations for heat and mass transfer coupling or providing evidence for performance enhancement. Numerical simulation can simulate the diffusion paths and heat and water transfer processes to understand the thermal and mass transfer mechanism, thereby better achieving the design of efficient solar interfacial evaporators. Therefore, this review summarizes the latest exciting findings and tremendous advances in numerical simulation for solar interfacial evaporation. First, it presents a macroscopic summary of the application of simulation in temperature distribution, salt concentration distribution, and vapor flux distribution during evaporation. Second, the utilization of simulation in the microscopic is summed up, specifically focusing on the movement of water molecules and the mechanisms of light responses during evaporation. Finally, all simulation methods have the goal of validating the physical processes in solar interfacial evaporation. It is hoped that the use of numerical simulation can provide theoretical guidance and technical support for the application of solar-driven interfacial evaporation technology.

11.
Environ Res ; 251(Pt 1): 118638, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38462088

RESUMO

This study investigates the effects of climate change on the sediment loads of the Ping and Wang River basins and their contribution to the sediment dynamics of the lower Chao Phraya River basin in Thailand. The various climate models under different Representative Concentration Pathways (RCPs) scenarios are employed to project sediment loads in future. The findings indicate a significant increase in river flow approximately 20% in the Ping River (PR) and 35% in the Wang River (WR) by the mid-21st century and continuing into the distant future. Consequently, this is expected to result in sediment loads up to 0.33 × 106 t/y in the PR and 0.28 × 106 t/y in the WR. This escalation is particularly notable under the RCP 8.5 scenario, which assumes higher greenhouse gas emissions. Additionally, the research provides insights into the potential positive implications for the Chao Phraya Delta's coastal management. Without further damming in the Ping and Wang River basins, the anticipated rise in sediment supply could aid in mitigating the adverse effects of land subsidence and sea-level rise, which have historically caused extensive shoreline retreat in the delta region, particularly around Bangkok Metropolis. The paper concludes that proactive adaptation strategies are required to manage the expected changes in the hydrological and sediment regimes to protect vulnerable coastal zones and ensure the sustainable management of the Chao Phraya River Basin in the face of climate change.

12.
Sci Bull (Beijing) ; 69(8): 1153-1160, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38433030

RESUMO

Although climate change has convincingly been linked to the evolution of human civilization on different temporal scales, its role in influencing the spatial patterns of ancient civilizations has rarely been investigated. The northward shift of the ancient Silk Road (SR) route from the Tarim Basin (TB) to the Junggar Basin during ∼420-850 CE provides the opportunity to investigate the relationship between climate change and the spatial evolution of human societies. Here, we use a new high-resolution chironomid-based temperature reconstruction from arid China, combined with hydroclimatic and historical datasets, to assess the possible effects of climate fluctuations on the shift of the ancient SR route. We found that a cooling/drying climate in the TB triggered the SR route shift during ∼420-600 CE. However, a warming/wetting climate during ∼600-850 CE did not inhibit this shift, but instead promoted it, because of the favorable climate-induced geopolitical conflicts between the Tubo Kingdom and the Tang Dynasty in the TB. Our findings reveal two distinct ways in which climate change drove the spatial evolution of human civilization, and they demonstrate the flexibility of societal responses to climate change.


Assuntos
Mudança Climática , Humanos , China , Temperatura Baixa , Temperatura
13.
Environ Sci Pollut Res Int ; 31(17): 26217-26230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494570

RESUMO

The allocation of water in areas which face shortage of water especially during hot dry seasons is of utmost importance. This is normally affected by various factors, the management of which takes a lot of time and energy with efforts falling infertile in many cases. In recent years, scholars have been trying to investigate the applicability of fuzzy interval optimization models in attempts to address the problem. However, a review of literature indicates that in applicating such models, the dynamic nature of the problem has mostly been overlooked. Therefore, the aim of the present study is to provide a fuzzy interval dynamic optimization model for the allocation of surface and groundwater resources under water shortage conditions in West Azerbaijan Province, Iran. In so doing, an optimization model for the allocation of water resources was designed and then was validated by removing surface and groundwater resources and analyzing its performance once these resources were removed. The model was then applied in the case study of ten regions in West Azerbaijan Province and the optimal allocation values and water supply percentages were determined for each region over 12 periods. The results showed that the increase in total demand has the greatest effect while the increase in groundwater industrial demand has the least effect on the supply reduction rate. The increase of uncertainty up to 50% in the fuzzy interval programming would lead to subsequent increases in groundwater extraction by up to 19% and decreases in water supply by up to 10%. The increase of uncertainty in the fuzzy interval dynamic model would cause an increase in groundwater extraction to slightly more than 10% and a decrease in water supply to 0.05%. Therefore, implementing the fuzzy interval dynamic programming model would result in better gains and would reduce uncertainty effects. This would imply that using a mathematical model can result in better gains and can provide better footings for more informed decisions by authorities for managing water resources.


Assuntos
Lógica Fuzzy , Água Subterrânea , Água , Irã (Geográfico) , Azerbaijão , Modelos Teóricos , Recursos Hídricos , Abastecimento de Água , Alocação de Recursos
14.
Environ Monit Assess ; 196(4): 378, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499847

RESUMO

Allocation of water in the situation of climate change presents various uncertainties. Consequently, decisions must be made to ensure stability and functionality across different climatic scenarios. This study aims to examine the effectiveness of adaptation strategies in the agricultural sector, including a 5% increase in irrigation efficiency (S1) and a shift in irrigation method to Dry-DSR (direct seeded rice) under conditions of climatic uncertainty using a decision-making approach. The study focuses on the basin downstream of the Sefidroud dam, encompassing the Sefidroud irrigation and drainage network. Initially, basin modeling was conducted using the WEAP integrated management software for the period 2006-2020. Subsequently, the impact of climate change was assessed, considering RCP2.6, RCP4.5, and RCP8.5 emission scenarios on surface water resources from 2021 to 2050. Runoff and cultivated area, both subject to uncertainty, were identified as key parameters. To evaluate strategy performance under different uncertainties and determine the efficacy of each strategy, regret and satisfaction approaches were employed. Results indicate a projected decrease in future rainfall by 3.5-11.8% compared to the base period, accompanied by an increase in maximum and minimum temperatures (0.83-1.62 °C and 1.15-1.33 °C, respectively). Inflow to the Sefidroud dam is expected to decrease by 13-28%. Presently, the Sefidroud irrigation and drainage network faces an annual deficit of 505.4 MCM, and if current trends persist with the impact of climate change, this shortfall may increase to 932.7 MCM annually. Furthermore, satisfaction indices for strategy (S2) are 0.77 in an optimistic scenario and 0.70 in strategy (S1). In a pessimistic scenario, these indices are 0.67 and 0.56, respectively. Notably, changing the irrigation method with Dry-DSR is recommended as a robust strategy, demonstrating the ability to maintain basin stability under a broad range of uncertainties and climate change scenarios. It is crucial to note that the results solely highlight the effects of climate change on water sources entering the Sefidroud dam. Considering anthropogenic activities upstream of the Sefidroud basin, water resource shortages are expected to increase. Therefore, reallocating water resources and implementing practical and appropriate measures in this area are imperative.


Assuntos
Mudança Climática , Monitoramento Ambiental , Irã (Geográfico) , Agricultura/métodos , Água , Irrigação Agrícola/métodos
16.
Sci Rep ; 14(1): 5469, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443699

RESUMO

In this study, a data-driven approach employed by utilizing the product called JRC-Global surface water mapping layers V1.4 on the Google Earth Engine (GEE) to map and monitor the effects of climate change on surface water resources. Key climatic variables affecting water bodies, including air temperature (AT), actual evapotranspiration (ETa), and total precipitation, were analyzed from 2000 to 2021 using the temperature-vegetation index (TVX) and Moderate Resolution Imaging Spectroradiometer (MODIS) products. The findings demonstrate a clear association between global warming and the shrinking of surface water resources in the LUB. According to the results, an increase in AT corresponded to a decrease in water surface area, highlighting the significant influence of AT and ETa on controlling the water surface in the LUB (partial rho of - 0.65 and - 0.68, respectively). Conversely, no significant relationship was found with precipitation and water surface area (partial rho of + 0.25). Notably, the results of the study indicate that over the past four decades, approximately 40% of the water bodies in the LUB remained permanent. This suggests a loss of around 30% of the permanent water resources, which have transitioned into seasonal water bodies, accounting for nearly 13% of the total. This research provides a comprehensive framework for monitoring surface water resource variations and assessing the impact of climate change on water resources. It aids in the development of sustainable water management strategies and plans, supporting the preservation and effective use of water resources.

17.
Environ Sci Pollut Res Int ; 31(15): 22588-22603, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411915

RESUMO

Recently, the integrated different interdisciplinary studies derived the environmental solutions of the climate change impacts (e.g., cultivation, wastewater treatment, and managing groundwater resources) (Mesalhy et al. 2020, and Gobashy et al. 2021). Thus, this paper focused on the application of bioremediation to maximize the use of wastewater for new reclamation areas in the Northwest Egyptian desert (New Egyptian Delta (NED). In the NED project, the drainage water samples collected from Nile Delta drains will provide the main unconventional water resources for irrigation through the new Hammam canal. Therefore, three Pleurotus strains were grown moderately on two natural media, the first containing Salvia L. (sage) extract (MDA) and the second containing Thymus vulgaris L. (origanum thymus Kuntze, Thymus collinus Salisb) (TDA) extract replacing potato infusions in standard PDA. Pleurotus ostreatus (Jacquin; Kummer) strain records the highest growth among the three tested fungi on modified media. PO records 4.49 and 4.41 cm on (MDA) and (TDA), respectively. There is a marked decrease in the majority of heavy metal concentrations on sterile drainage water amended with PD broth and inoculated with three tested Pleurotus strains individually. At the end of the incubation period, Pleurotus ostereatus which expressed in abbreviation (PO) are more efficient in the removal of Al, Co, Cr, and Ni by 53.15, 95.87, 58.47, and 85.07%; respectively. Pleurorotus pulmonarius (Fr.) which symbolized (PP) is more potent in the removal of Cd, Si, Sn, Sr, and V by 70.37, 56.59, 41.19, 52.78, and 96.24%; respectively. Pleurotus floridanus (NZOR) which indicated as (PF) is actively over the former species in the removal of Ba, Fe, and Mo by 87.84, 46.67, and 97.34%; respectively. Cu, Mn, Pb, As, and Se could not be detected as the control sample recorded measurements below 0.009 mg L-1. An unexpected increase in Zn among the different treatments was detected from 05.04 to 07.01%.


Assuntos
Metais Pesados , Pleurotus , Água , Mudança Climática , Egito , Metais Pesados/análise , Extratos Vegetais , Monitoramento Ambiental
18.
Environ Sci Pollut Res Int ; 31(15): 23091-23105, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413526

RESUMO

As one of the most rapidly developing cities in China, Shenzhen grapples with an increasing challenge in managing water resources due to escalating conflicts with its soaring water demand. This study established a system dynamics (SD) model based on a causal loop diagram to explore the intricate interconnections within the urban water resources system. Through simulating water supply and demand in Shenzhen from 2021 to 2035, the model identified key sensitive factors and examined various utilization scenarios for multiple water resources. Results indicated that water scarcity posed a significant obstacle to Shenzhen's development. To tackle this challenge, several effective measures should be implemented, including enhancing water conservation capabilities, developing seawater resources, promoting water reuse, optimizing the economic structure, and managing population growth. Prioritizing water conservation efforts and maximizing the utilization of seawater resources were regarded as the most impactful strategies in alleviating the water crisis. Furthermore, the relationship between water conservation capabilities and seawater utilization scale was analyzed using the SD model, contributing to the development of a comprehensive water resources management strategy. The findings from this study would provide insights into robust methods for allocating water resources, thereby enhancing sustainable water management strategies applicable to regions facing similar challenges.


Assuntos
Recursos Hídricos , Abastecimento de Água , Cidades , China , Água , Conservação dos Recursos Naturais/métodos , Urbanização
19.
Sci Total Environ ; 919: 170757, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340851

RESUMO

Water resources carrying capacity (WRCC) is indispensable for sustainable development, acting as a crucial determinant for harmonizing ecological preservation with socio-economic advancement. This research delineates an advanced evaluation index system for WRCC, focusing on Henan Province, China, a region straddling the Yangtze, Huaihe, Yellow, and Haihe river basins. Leveraging the analytic hierarchy process (AHP) with a system dynamics (SD) model, our analysis dissects the nonlinear interplays among demographic expansion, economic activities, land use patterns, water resources, and water environment. We introduce a novel integration of the "Four Determinations with Water" principle with sustainable development tenets, thereby sculpting six exploratory scenarios that chart Henan's potential paths from 2022 to 2035. Through these scenarios, we forecast and scrutinize the evolution of population dynamics, GDP, water supply, and sewage discharge volumes, employing rigorous quantitative analyses for a holistic evaluation. The results show that: WRCC in Henan Province becomes larger gradually, and, in Scenario 6, the WRCC indicator is the largest (0.643 in 2035) and the prediction effect is the best, while in Scenario 1, the WRCC indicator is the smallest (0.472 in 2035) and the prediction effect is the worst. Based on the prediction results, suggestions were made to adjust the industrial structure and strengthen the awareness of water conservation to improve the regional water resources carrying capacity.

20.
J Environ Manage ; 355: 120462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422851

RESUMO

Globally, lakes are drying up and shrinking and inland lakes, in particular, face severe water shortage problems. Thus, the degradation mechanisms and protection measures for inland lakes urgently need to be explored. Hongjiannao Lake (HL), an inland lake on the border of Shaanxi Province and Inner Mongolia Autonomous Region of China, was selected for the present case study. The evolution of HL was analyzed and the current lake water storage was measured on site. The driving factors of water resource changes in HL were discussed based on meteorological and landcover data. The results showed that (1) from 1929 to 2021, the lake area of HL experienced four stages: formation, stability, shrinkage and recovery. The smallest water area was 31.08 km2 in 2015, half the size of lake in the 1960s. (2) Spatially, the morphological changes of HL mainly occurred where the rivers entered the lake. (3) In 2021, the average depth of HL was 3.77 m, and the water storage capacity was 140.56 million m3. (4) The annual average evaporation was 3.36 times the amount of the annual average precipitation in Hongjiannao Basin (HB), but climate change was not the main driver of changes in the HL area. (5) In the past 20 years, cultivated land and artificial surface increased by 3.11% and 1.04%, respectively, whereas grassland and water body decreased by 3.51% and 0.45%, respectively. The expansion of cultivated land and artificial surface, as well as the construction of reservoirs upstream of the lake, hindered the replenishment of water resources to HL. This study recommends a range of strategies for water resource protection in inland lakes, including implementing ecological restoration projects, carrying out inter-basin water transfer measures, improving the efficiency of regional water resource use, and improving industrial structure and distribution.


Assuntos
Lagos , Recursos Hídricos , China , Água , Rios , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA